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FOREWORD

This report is one of a series in the field of structural dynamics prepared
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I_NTRODUCTION

This monograph discusses the lateral model development and modal calculations

for the cylindrical space vehicle system and also systems employing clustered
tanks. Relative importance of physical characteristics will be discussed as well

as methods used by the industry for the solution of modal parameters. Primary

attention is focused on parameters important in control and stability analyses for

which the system frequency of interest is generally below twenty cycles per second

and quite often below ten cycles per second. Application for loads analysis follows

the same principals outlined herein but may require more detailed representation
in areas where loads or deflections can be critical. Themodels described will be
concerned with gross vehicle lateral motions and will not include the shell radial

deflection modes which can be significant for local effects analysis but generally

do not contribute to gross vehicle control and stability. Related monographs describe

torsional, longitudinal, and sloshing models. Stability and loads analytical methods

using these models and modal parameters are also subjects of other monographs.

The general approach for dynamic solutions involving large systems is to develop

a mathematical model describing the system's mass and structure, calculate its normal

modes of vibration, and then, using normal mode theory, apply the external forces

and couple in the control system to obtain total response. The dynamic analysis

is then only as accurate as provided by the mathematical model representing the

space vehicle system; therefore, development of these models is of major importance
in dynamic analysis. Also, since these models are idealizations and approximations

of the real system, the experience of an analyst in deciding which elements are

dominant contributes greatly to the successful representation of the system.

Representation of the space vehicle system in the lateral direction is accomplished

by a series of lumped masses connected by elastic beams. By successive refinements,
such as branch beams to include multiple load paths, concentrated masses attached

to the beam by translational and rotational springs, or other possible independent

structures or components, the model can simulate all significant motions. The

mathematical model and numerical techniques to obtain lateral normal modes for

space vehicle systems comprised of tandem cylindrical structures have been
extensively developed by aerospace industries.

The addition of peripheral tanks to a center core Increases the complexity by

three mechanisms,, (1) the attachments between tanks require additional boundary

conditions: (2) the attaching structure is generally complex, and (3) the peripheral
tanks generally destroy axis-symmetry and results in multi-directional normal modes.

The present techniques employed with these clustered boosters are essentially the
same as those of the simple cylindrical structure; however, the complexit_y dictates

use of more points to describe the system and the analysis can easily exceed computer

storage capacity. This leads to a compromise between accuracy of results and
efficiency and capability of present computer facilities.



2/STATE-OF-THE-ART

The original work in the study of the phenomenon of structural dynamic behavior

was primarily restricted to simple spring-mass systems and severly limited in

its coverage of continuous systems to uniform beams and plates. As structural

complexity increased, consideration of practicality rendered these solutions

unjustified. The analysis of larger systems required vast amounts of time and

effort and, since all calculations were done by hand, numerical accuracy became

a problem of major concern. The most practical solution to a structural dynamics

problem generally turned out to be a healthy factor of safety applied to structural

capacity.

With the advent of aircraft, a large safety factor could no longer provide the

means of accomodating dynamic effects. The development of machine calculators

enabled the analyst to develop more complex dynamic models and associated
solution techniques to provide answers to the problems of stability and flutter in

aircraft design. Still further refinement in modeling techniques has been permitted

by the introduction of electronic computing systems. The capacity of these

computing systems and rapid computation cycles has resulted in the development

of more numerical techniques utilizing smaller iteration intervals with a

resultant increases in solution accuracy.

Approximate methods for solving the equations resultant from model simulations

have been developed; a summary (from Reference 1) in tabular form of the

representative accuracy of some of these techniques is presented in Table 1.

To illustrate the ability of lumped parameter systems to represent continuous

systems, consider a uniform simply supported beam. The exact expressions for

the natural frequencies and their associated mode shapes are well known:

Ca = Sln__

where n is mode number, I is the length of the beam, and

unit length. Assuming the following physical data:

is the mass per

1 = 120 inches (3.05 meters)

1013 2EI = 8 x 109 lb-in 2 (2.33 x gr cm

bL = 400 lb/inch (7.14 x 104 gr/cm)

2
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the resultant first three natural frequencies are:

w_ = 3626.5; ¢_1 =60,22; f = 9.58cps

¢_e = 58024." w_ =240.88;f=38.34cps

¢t_2 = 293748. ; ¢03 = 541.98; f = 86.26 cps
3

Table 1. Comparison of Accuracy of Various

Methods of Approximate Solution

Number of _¢ 0¢
Method Masses 1 % Error 2 % Error

o,

Rayleigh-Ritz

2-Polynomial 10 2. 5372 2.38 12. 9085 42.0

Rayleigh-Ritz 10 2.4894 0, 45 9.9379 9.34
3-Polynomial

Modified
10 2. 4769 -0.05 9. 4832 4.34

Rayleigh-Ritz
2-Polynomial

Collo.cation 11 2. 4760 -0.09 8. 9207 -1.85

2 Station 11 2. 4773 -0.04 9. 0012 o0.96
Functions

10 2. 4769 -0.05 9. 4832 4.34
Iterated

Rayleigh-Ritz

Polynomial

(Galerktn)

Holzer-

Myklestad

Direct

Iteration

10

5

2.4776

2.4761

-0.02

-0.09

9. 1513

9.3457

0.69

2,82



The associated mode shapes _bl, _b2, and $3 are sine waves of one, two and three

half waves, respectively.

Simulating this same simply supported beam by a set of equal lumped masses

spaced equidistant along the beam establishes a discrete system which may be
solved in any number of different ways. Trial cases have been analyzed using

10, 20, and 30 lumped masses. Comparison of the resultant natural frequencies
can be seen in Table 2.

The accuracy of the solution of the discrete system varies with the number of

degrees of freedom given to it; note, however, that the relationship is not direct;

the accuracy requirements of the task influence the decision as to how many

degrees of freedom can be justifiably assigned to the model.

tem

1
2

3

Table 2. Frequency Comparison

Exact Solution and Discrete System Solution for Simply

Supported Uniform Beam

Continuous

(Exact

Solution)

9.58
38.34

86.26

10-mass 20-mass

lumped

parameter

9.58
38.33

86.20

lumped

parameter

9.58
38.34

86.26

30-mass

lumped

parameter

9.58
38.34

86.26

( Frequencies :are in cycles per second. )

Application of the lumped parameter techniques to space vehicle systems has

been used extensively by the aerospace industry. Invariably, the propellant

tanks and all cylindrical structures are described as beams with propellant and

structural mass distributed. Local stiffnesses are represented as equivalent

translational and rotational springs or by experimentally or analytically
determined influence coefficient matrices.

There have been several attempts to verify the dynamic characteristics
of a launch vehicle as indicated by the analytical model with those obtained

by test on the prototype itself. A comparison of experimental and analytical

modes for an Atlas with a long, slender payload is given in Reference 2,
These results show that frequenoies for the first four modes are within 10%

accuracy. The mode shapes are fairly well represented in the first four

bending modes although displacement amplitudes were found to increase in
error with mode number. Using the generalized mass as a measure of mode

displacement error these are 4%, 28.2_, 177%, and 20% for the first 4 modes.

The fifth mode shape was not well represented although frequency comparison
was within 15%.



A similar comparison was made for the Minuteman solidICBM inReference

3, These results give a 13% differencefor frequency in the firstfour modes

and slightlylarger errors in mode shape. After a correction for adapter joint

flexibilitythe maximum error in frequency of the firstfour modes was 6%

with corresponding improvement in mode shape.

Vibration test results of an Atlas-Agena-OAO vehicle, which is a more

complex structure than the previously mentioned vehicles, are presented in
Reference 4. Here, the first mode compares reasonably well with the

analytical modes; however, the higher modes were not representative of the

analytical modes. Detailed examination of local structure revealed possible

amplitude dependent component stiffnesses. When this characteristic was

taken into consideration, the comparison between analytical and test mode

shapes was improved to a satisfactory level.

Several important factors can be obtained from the results of these

comparisons: (1) the idealization of the tank as a one-dimensional beam

appears to be adequate; (2) much attention should be focused on local
structure such as connections; (3) the numerical procedures presently

available are capable of solving for the primary modes. These studies

also verify what might be inferred from the mathematical characteristics:

just as the eigenvalues (frequencies) can be determined with greater accuracy

than the eigenvectors (mode shapes), so are the frequencies of the physical

system more accurately predicted analytically than the corresponding mode

shapes. Furthermore, with the numerical methods used to analyze large

systems, the accuracy of the calculated characteristics decreases with

increasing order of mode number. The redeeming feature is the fact

that for most vehicles the overwhelming fraction of response is obtained
from the first and sometimes second mode. Consequently, although a

sizeable error may be introduced in the higher modes, the net error in

total vehicle response is small. As a matter of fact, in the case of cylindrical

vehicles, attempts to verify the mathematical representation in flight has
succeeded in only identifying the first mode and second mode frequencies

from the flight data.

Analysis of clustered boosters is stillinthe formative stage, although

much improved over the earliestattempts at analysis. The firstefforts

(Reference 5)attempted singlebeam models, but when testson the vehicle

were performed, the totalinadequacies of the singlebeam analogy were made

apparent. Itwas evident that multidimensional motion and individualtank

motions must be defined analytically. The analysis procedure was revised

to provide for such motions. The firstattempts at such analysis produced

results which were stillsignificantlyatvariance with testdata. The primary

cruse was found in the evaluation of the stiffnessof the complex structure.

As structuraldefinitionimproved, so did the modal dat_, Mathematical

difficultiesimposed by excessive numbers of coordinates have been overcome

by use of the modal, synthesistechnique (Section4,3). Modal data thus

obtained compares well with both staticand flighttestdata.

5



In the case of Saturn, the frequency comparison between analysis and test is quite

good, (Reference 6). Again the mode shapes do not agree as well, especially
in the motion of peripheral tanks. The effect of these modal discrepancies on

control and loads is not important. Techniques have been developed whereby

these discrepancies are accounted for and reworked as they appear. These
discrepancies also vary from one vehicle to another, which sometimes necessitates

additional work to obtain satisfactory agreement between model and test.

A variance with cylindrical tank vehicle experience is the composition of flight

test response data of clustered tank vehicles. Such data from gyro and accelerometer

traces indicates measurable contributions to vehicle response from several bending

modes and higher complex modes. (See Reference 7).
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3/MODELREQUIREMENTSAND RECOMMENDEDPROCEDURES

The solutionof dynamicsproblems is approachedby developinga set of governing
equationsthrough considerationof the conditionof dynamicequilibrium or of
energy relationships of the system underappliedexternal forces. For anun-
dampedsystem the generalform of theseequations, in matrix notation, is

[M 7 {g ] + [K ] [z ] : IF]

where [M ]is a matrix of masses, [K 7 is a stiffness matrix, { z } and

are the displacement and acceleration vectors, respectively, and [ F ]
a vector of external forces.

(1)

A very useful characteristic of elastic systems is that they will respond or

vibrate in natural orthog0nal modes of displacement Sn with circular

frequencies U_n The total displacement of a system can then be expressed

as a summation of individual natural mode displacements,

This is given by

[z ] = ['_] {q} (2)

where [ _]is a matrix of mode shapes and qn is the time dependent amplitude

of mode n, Substituting equation (2) into equation (1) yields

[M] [qb] [_'} + [K] [¢.] [q} : {F}. (3)

Premultiplying both sides of (3) by [@ ] gives
/ I

[_] [M]E¢]{q] + [_] [g][¢][q] =[¢] [ F "_. (4)

the requirements of orthogonality and harmonic motion of the natural modes

provide the relationships

/

[(I,l [MIle] = ['m.l (B)

and

[@] [K] [@ ] = _'wm_] _'m_], (B)

Substituting (5) and (6) into (4), we obtain

[_] + too_] [q} = [m] [¢]
-1

[F} =[m] {Q}, (7)



Equation (7)is a set of n uncoupled equations in terms of qn, _n, the generalized

mass, m n and the generalized force Qn • The solutions of these equations identify

the time dependent values of qn which are then used in equation (2) to give complete

system response. Detal]ed discussions, derivations, and proofs of the equations
of motion, orthogonallty of natural modes, and normal mode theory are given in
References 8 to 11.

The use of normal mode theory requires determination of these natural modes of

vibration. If harmonic motion is assumed and the applied forces are equal to zero,
then equation (1) can be written as

or

[z} = W 2 [K] -1 [M_ [z}. (8)

Each of these equations is in a form suitable for solutions to obtain the orthogonal
modes and their natural frequencies. Many numerical techniques have been

developed to obtain these characteristics and several are discussed in Section 4.2.

The above discussion presents the fundamental approach to structural dynamic

response analyses. The mathematical model used to simulate the physical system

is the basis for determining the natural modes and the solution of the dynamic

problem. It is significant, therefore, to examine in detail the factors influencing
its development.

3.I LATERAL REPRESENTATION OF CYLINDRICAL LIQUID PROPELLANT

VEHICLE. In most instances, the lateral dynamic characteristics of liquid

rocket propelled space vehicle systems can be considered to be adequately repre-
sented by simple one-dimensional beam theory. It is common practice, and

certainly more convenient, to replace tee continuous structure by a lumped parameter
idealization. In such an idealization, the analyst concentrates attention on those

aspects of the system which are felt to be dominant (major masses, major structural

elements, propellants). The discrete model is formed by concentrating mass at
selected points along the beam. These points are ideally the o. g, of the distributed

mass which is to be considered concentrated at that point.

Elastic properties are expressed in lumped fashion as a set of flexibility co-

efficients, Cij , or stiffness influence coefficients, Ks j, These coefficients have a

physical slgnfficanoein that CiJ can be considered as the deflectionof point idue to

a unit load at J; and Kij equated to the force produced at point I due to a unit deflection
at point J, ifallcoordinates other than j are t(_mporarilyrestrained, (Flexibilityand

z



stiffness influence coeff eients are covered in more detail in Section 4.1).

The mathematical description of this discrete model is a set of simultaneous

linear ordinary differential equations. Such equations lend themselves readily

to matrix techniques and the utilization of digital computers permits the solutions

of sets of equations too large for practical hand computation.

The one-dimensional beam representation is the simplest lateral model and

may not fulfill all necessary requirements for a specific problem. This can
necessitate recognition of non-structural modes (sloshing), local response

characteristics (engines) or multiple load paths not accounted for in the simple

beam analogy. A further refinement of the model is then necessary.

3.1.1 MASS AND ROTARY INERTIA. The distributed mass and inertia data

must be lumped into discrete, point masses, the number of which determine the

degrees of freedom given to the model. The number of mass stations is influenced

by the number of bending modes to be calculated.

It has been found that for one-dimensional beam bending models the required

number of mass stations should be approximately ten times the number corresponding

to the highest elastic bending mode to be calculated. For example, if three elastic

bending modes are to be calculated, then approximately thirty mass stations are

required to represent adequately the bending dynamics of the third mode. This
criterion has been established empirically by calculating mode shape, frequency, and

generalized mass corresponding to the first three elastic bending modes for typical

vehicles configurations in which the numbers of mass stations used were successively

increased from eighteen to forty. As expected, the accuracy increased as additional

stations were utilized, However, it was observed that no further significant increase

in accuracy was achieved by using more than thirty mass stations.

For a more complex model (such as one with branched beams) the above general

rule may not be strictly applicable. For a branched system, the general rule may

be applied to the primary beam of the system, and masses lumped on the secondary

branches in about the same distribution, It must be emphasized tha t as the model

diverges from the single beam concept, performed mass lumping rules become less
applicable and more reliance must be placed upon the experience of the analyiet.

Note that only rigid masses are to be included in this distribution, that is, only
those masses which can be considered to act as an integral part of the unrestrained

beam during its vibrations. It cannot be over-emphasized that items such as pumps,

equipment pods, etc., which are actually, or simulated as, mounted elastically to the

main structure may significantly alter the bending characteristics of the higher

frequency modes.
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Whether or not such masses are to be treated as integral to the beam or as separate,

elastically attached masses, depends upon: (1) whether or not the frequencies

of the body modes to be computed are less than or greater than the mount frequencies

of the discrete masses, and (2) whether or not these masses are great enough to
materially affect the result.

Accurate representation of the distributed mass at discrete points would require

inclusion of the mass moment of inertia of the distributed mass at that point.

With liquid propellant, the effective moment of inertia is not easily determined.

Fortunately, these rotary inertias have only a small influence on the modal quantities

of the first two bending modes and can be neglected as shown in the work of Reference 12.

12. This work is a comparison of modal parameters for a typical launch vehicle

for calculations with and without rotary inertia terms. (Rotary inertia was

calculated assuming the liquid behaved as a solid). The differences in the first
two modes were less than 10% for all parameters and less than 5% for most para-

meters. In the third and fourth modes the differences were usually less than 20%

with a few extreme differences up to 100%. These calculations are at the extremes

of effective rotary inertia and the correct solution is probably somewhere between.

A better representation could be obtained by using more mass stations rather than
including rotary inertia.

Because of the small effect in the lower bending modes and the uncertainty

of effective inertia, it has been common practice to neglect this term. Also, this

allows for much more efficient computation since this eliminates half the coordinates
in the solution of characteristic equations.

3.1.2 SLOSHING PROPELLANTS. Space vehicle system propellants constitute a

large percentage of the total system weight. Part of this propellant can be con-

sidered as rigid or distributed mass on the idealized beam while a smaller portion

must be allowed to slosh in the lateral model. This sloshing mass becomes more

important in later flight times, when the sloshing mass becomes a sizeable pro-

portion of total vehicle weight. The complex problem of control system coupling

with multi-tank slosh masses precludes any simple rule of thumb criteria for

sloshing stability. Experiences with some vehicles indicate major instability

periods occur when the sloshing masses approach 20% of total vehicle mass.

Several methods have been developed for the description of propellant sloshing

modes and frequencies. The general approach, as related to lateral models, is

to derive the hydrodynamic equations Into a form suitable for a mechanical analogy,

It can be shown for a cylindrical tank that ifs (1) the tank walls are rigid. (2) the

fluid iS incompressible and lrrotattonal, and (8) only small disturbanou are

admitted, then pendulum or spring mass analogies can be devised which will re-

produce the characteristics of the i_ndamental mode of slosking oscillation.

Attaching the equivalent spring-mass to the lateral model is easily accomplished

and is therefore preferred over the pendulum, The second and higher sloshing

modes are not generally considered because the magnitude of lateral force

contribution from these modes decreases rapidly with Increasing order; further-

more, test experience indicates a great deal of turbulent mixing occurs and

damping effects are greater In higher modes.
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Techniquesfor deriving the mechanicalanalogiesfor slosh andtheir
limitations are the subject of another monograph.

3.1.3 ENGINE REPRESENTATION. Thrust-vector control of liquid-

propellant vehicles is generally maintained by gimballing the rocket engines.

Since the entire engine is gimballed rather than just the thrust vector, this

gimballing action will cause inertial forces as well as thrust forces to act

on the missile body. These inertial forces are appreciable, and their

lateral components will equal those of the thrust forces when the engine is

gimballed sinusoidally at a particular frequency; at higher frequencies
they can exceed thrust forces. The thrust vector displacement is determined

by two effects (1) the displacement contained within the elastic mode
(including the flexibility of the engine mounting and actuator structure) while

the servo positioning system is locked and (2) the additional degree of
rotational freedom added to represent the motion accompanying action of the

positioning servo. For an adequate representation in an analysis including

the engine and control systems it is necessary to include engine characteristics

in the lateral model. The only exception arises when the model frequencies

are well below those of the engine mounting system.

The engine is incorporated into the lateral model by attaching a mass and

moment of inertia at the appropriate location on the one-dimensional beam.

Since the engine itself is quite rigid, the only elasticity normally considered is

the mounting structure and actuator system_ This structure is generally

complex and test data is often required for proper simulation. One such

test would be a vibration test to determine the resonant frequency of the engine

on its mounts and using these results obtain the equivalent rotational spring

connecting the engine to the vehicle. This primary frequency is often low

enough to fall within the range of the lower vehicle bending frequencies and

as a result could have a significant effect on bending s_bility°

Other means of obtaining thrust vector control are used and require engine

representation in the lateral model. Vehicles using a combination of fixed

and gimballing or swivel engines require simulation of the fixed engines as

well as the engines with freedom to represent their displacement in the

vehicle elastic modes. Control concepts such as movable nozzles or stream
deflection, involve little or no additional mass motion and, tberefore, only

the fixed engine representation would have a significant effect on the lateral
modes.

3.1.4 BRANCH BEAMS_ Frequently, the vehicle construction will be such

thut major portions are cantilevered within another structure or are connected

through different load paths. Examples are: payloads enveloped by protective

f_irings, engine compartments of upper s_ge vehicles suspended in the inter-
stage adapter well, or multi-engine vehicles having independent load paths for

each engine - such as a center engine supported on the tank cone and peripheral

engines mounted to the cylindrical structure of the vehicle.

11



Suchconditionsare illustrated in Figure 1. Realistic representations of

these arrangements are required, not only for true definition of gross vehicle

response, but also to investigate possible interference between parts. These
multiple paths can be accounted for by appropriate branch beams from the major

planar beam. So long as the analysis is restrained to one dimensional motion,

there is no significant added complexity introduced by the branch beams since

the compatibility relationships at the junction

C

Figure 1. Example of Branched System

points can be easily satisfied. Note the model in Figure 1. Branch beams can

be attached in two ways: by secondary beam elements, as is done for the payload

fairing and the upper stage engine structure; or by concentrating elasticity in

lateral linear and angular springs, as is done for the external engines of the

booster. The only mathematical consideration involving in choosing which
analogy is more appropriate is that the beam element will influence more

elements of the flexibility (or stiffness) matrix than springs will, due to the
off diagonal cross-coupling terms.

Generally, these branch beam conditions are encountered with relatively

small masses and do not alter the gross vehicle modes significantly except
that an additional mode ie accounted for where the two branches are out of

phase but at nearly the same frequency as the in phase mode. When these branch

beams involve engine displacements, they can be significant for control and

stability analyses. For other portions of the vehicle they should be included

to obtain proper load distribution and clearance envelopes.
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3.1.5 LOCAL STRUCTURE EFFECTS. One of the major difficulties en-

countered in describing a vehicle is the effect of local structures such as

joints between the interstage adapters and vehicle stages, trusses on which

payload or engines are mounted, or play in joints such as engine gimbal
blocks when the engine is not under thrust. In the case of an adapter joint,

its stiffness may vary under compression 0/"tension. Although these joints

are usually in compression, it is possible during the period of maximum

aerodynamic loading for the combination of axial and bending loads to cause

one side of the cylinder to be in tension. Depending on the characteristics of

the joint, this could lead to a significant error in frequency and mode shape.
The variation in stiffness of the joint under these conditions is difficult to

determine accurately by analysis and usually test verification is necessary to
determine the significance of this effect. Once these values are obtained,

they can be substituted in the model and used for the modal calculations.

Similar problems can exist for the local structure supporting engines

or payloads since these structures are often redundant, carrying loads to

a flexible shell. It is possible to obtain these influence coefficients analytically,

but a final check with test results is advisable. The free play occasionally

found in connections such as an upper stage engine gimlml (when not under

thrust) during first stage flight is random and difficult to represent. These

can produce some low frequency pendulum or inverted pendulum modes of
significance if the mass involved is appreciable. To determine such effects

some crude pendulum-spring mass analogies can be used to establish whether

or not further consideration is necessary.

The above are a few local effects to be examined in construction of the

lateral model. In general, Joints that carry significant loads or components
of sizeable mass should be examined in some detail to establish the degree

of representation required in the lateral model.

3.1.6 LOCAL NON-LINEARITIES. If major non-linearities exist, the system

and its response cannot be described correctly with conventional normal mode

analysis techniques. The effect of a separation Joint possessing non-linear
bending stiffness was investigated throuKh the use of quasi-normal modes and

a Rayleigh - Ritz analysis in the work of Reference 12. In the analysis, the

assumed mode shapes are those of the vehicle having an infinitely stiff

separation Joint plus one additional mode having a single concentrated non-

linear rotational spring located at the separation point with the remainder
of the vehicle considered as rigid. The LaGrange equations produced

simultaneous equations in the normal mode ooordinates with inertial

coupling between the orthogonal elastic modes and the non-linear spring
mode.
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To the equations of motion developed with the above techniques were added

the control sensors, engine representation, and control system representation

for a bonding stability analysis. Because of the non-linearities in both the

vehicle structure and the engine actuators the solution was obtained with an

analog computer. The study presents an approach for solving problems in

structures with non-linearities using models modified to account for local

peculiarities.

3.1.7 TEMPERATURE. Space vehicle systems primary structure are

subjected to change in temperature of hundreds of degrees varying from

cryogenic temperature to the extreme elevated temperature resulting from

aerodynamic heating. This increase in temperature causes a reduction in
the material moduli which in turn leads to a small reduction in frequencies

and altered mode shapes. Temperature considerations are unimportant

until after the period of maximum aerodynamic pressure and then only for

certain portions of the vehicle. Since the period of maximum heat lng
occurs after the period of maximum disturbance and only affects parts of the

structure, its significance is greatly reduced. The heating of various

portions of the vehicle can be predicted within tolerances necessary for

modal analyses to establish the resultant variation in modal parameters.

It is a condition which should be examined if bending stability is marginal.

3.1.8 AXIAL LOAD. Axial loads caused by longitudinal acceleration of

several gWs during flight will cause a slight decrease in bending mode

frequency through two mechanisms: (1) the effect of axial load on beam vibration,

and (2) the reduction in equivalent skin on stringer-skin structure. The

first effect can be represented analytically and the second can be included

after calculating or obtaining the equivalent skin from empirical data.

The total effect of axial loads is generally very small and in nearly all

cases can be ignored. In cases where the control system is margindlly
stable this is one of the several minor effects that must be evaluated.

The study in Reference 13 shows that the effect on frequency for

representative booster structure is less than 1% when shear stresses are
small.

3.1.9 LATERAL-TORSIONAL-LONGITUDINAL COUPLING. The typical

axis symmetric cylindrical space vehicle is analyzed as if lateral, torsional,

and longitudinal motion are not coupled. Actually, these vehicles are not

completely symmetric and a possible coupling mechanism, however slight,

can always be found. The importance of this coupling can vary greatly
from vehicle to vehicle and even if it is known to exist from flight or

experimental data, the coupling mechanism is difficult to identify. These

coupling problems often occur when the modal frequencies of two modes,

say, one lateral and one torsional, are very close together. Then a very

small coupling mechanism, such as o.g. offset from the supposed line of

symmetry, can result in coupled motion,
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A comparionsof the frequenciesof the modesin the three directions
shouldbemadeto determine the existenceof modesof nearly equalfrequency.
If sucha conditionexists, it is necessaryto examinethe conditionunder
which this may causea significant problem. As anexample, if a limit cycle
canoccur due to sloshing, could this cause excitation of a critical torsional

mode at this same frequency or sub-harmonic ? In most instances of coupling
of this type, a periodic forcing function is necessary to transmit the energy
from one direction to another.

Cylindrical vehicles with unsymmetric upper stages or payloads of large

mass can cause coupling in the various directions in the low frequency modes.

The model (and analysis) then become complicated and approaches that of the
clustered boosters. Representation of this configuration requires detailed

description in the unsymmetric stages and proceeding with analysis as

described later for clustered boosters. Preliminary work would indicate

the degree of sophistication to be used for adequate representation for
stability and loads analysis.

3.1.10 DAMPING EFFECTS. Structural dissipative (damping) forces exist

in the vibrating structure as a result of material strain hysteresis and coulomb

friction in structural joints. The nature of these damping effects is obscure

and does not lend itself to analysis other than an approximate empirical

treatment, by which the gross effect of these scattered dissipative mechanisms
is represented as an equivalent viscous damping, added to each mode as

appropriate. The damping is thus assumed to produce no coupling between
modes. While this mechanization is not entirely realistic, it is justified

by the following observations:

a. The actual damping is very low and is found by test to produce little
coupling. Thus, nearly pure normal modes of a system may be

excited and the system observed to decay almost harmonically.

The indication given is that velocity dependent coupling is very small.

b. If an attempt is made to show a velocity dependent coupling, the

coefficient would have to be determinedexperimentally. Since
the direct damping coefficient is itself difficult enough to measure

it is clear that the accuracy of a study can not be increased by the

introduction of still more suspect data.

The structural damping force is a function of the deflection of the

generalized coordinate of the mode but in phase with the velocity of the

generalized coordinate of that mode. To treat this damping as a viscous
damping requires that the mode oscillate in a quasi-harmonic manner.

This damping force may then be expressed as a damping factor, _n,

where 2_n _n_n is the internal damping force of the nth mode per unit
generalized mass.

15



Fluid propellant damping forces result from the dissipative nature of a

viscous fluid undergoing shear. Although there are some approximate

methods for calculating damping forces, these forces are most commonly

arrived at by experimental testing of the actual tank, in the case of small

missiles, and a model tank in the case of large missiles. These forces may

be represented as a propellant damping factor, _1 , in the expression

2_lU)lC[ 1 which is the damping force per unit sloshing mass attd ¢_1 is
the lateral velocity of the lth sloshing mass.

Equation (7), with damping included, becomes

_/n + 2(nWnqn + _qn = mn 1 Qn (9)

Methods for obtaining values of _ n from vibration test date are given

in the monograph covering that subject. The dissipative forces associated

with sloshing are covered in the sloshing model monograph.

3.2 ADDING COMPONENTS USING MODE SYNTHESIS. Frequently it is

desirable to make a parameter study to determine the effect on vehicle

response resulting from changes in the characteristics of a specific area

or component, e.g. a sloshing mass or engine system. Rather than make

several analyses of the system changing but a fraction of the parameters
each time, the vibration characteristics of the system excluding the specific

varying parameter may be calculated, and then modified by coupling the

parameter back in through the mode synthesis technique (discussed in

Section 4, 3).

For reasons developed more fully in Section 4.3, the mode synthesis

approach may result in a loss Of accuracy. The analysis that considers
the most information about the system will be the most accurate, The

use of many modes in the mode synthesis technique willgive theoretically

more accurate results than using a minimum number of modes. This

aspect is one which must be handled by discretion born of experience. As

an example, in calculatingthe bending modes with sloshing propellants,

three alternativesare available'.

1. Include the sloshing mass as an attached spring-mass to the beam
in the modes calculation.

Assume the sloshing mass is Included in the "rigid" propellants

for modes calculation. The sloshing is then included through

mode synthesis by adding the single spring mass mode and

subtractingthe sloshing mass effectsfrom the bending modes.

This requires both inertialand elasticcoupling in the synthesis.
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. Assume the sloshing mass can be eliminated in the "rigid"pro-

pellantsfor modes calculations. The sloshing is then included

through mode synthesis by adding the simple spring mass mode.

This requires only elasticcoupling in the synthesis.

These alternatives are listed in order Of accuracy of end results

following the general rule stated previously. There are many examples

where there would be little if any degradation of accuracy. As an

example, consider a vehicle with first bending frequency of 5 cps

and first slosh frequency of 1 cps, then the sloshing is essentially

uncoupled from the elastic modes. If the slosh frequency were 4
cps, then considerable coupling is possible.

Although sloshing was used as an example, the same is true for

any representation of this type, i.e., engines, payloads, sloshing

propellants, or any other large component, or specific parameter under
investigation.

3.3 CORRECTING MODEL BASED ON TEST RESULTS. The final

verification of analytical techniques is a comparison with experi-

mental data. Perfect comparisons are indeed exceptions, since

both the analytical model and experimental model are approximations

to some extent. The analytical approximations have been discussed.

The major experimental approximations are centered around suspension
system effects and vehicle modifications required to accommodate the

suspension system. No general rule can be made to obtain better agreement
between test and analysis. Careful examination of the data and the

structure will probably indicate several areas where the representation
is inadequate or does not define the test specimen. Possible causes of
differences are:

(1) Effects of suspension system on test environment.

(2) Stiffness of Joints or trusses.

(3) Assumed planes of symmetry incorrect.

(4) Effect of large components, such as engines.

(5) Experimental modes may be impure, l, o,, not orthogonal or
Anolude parts of other modes,

(0) Effects of rotary inertia,

The work of Reference 14 presents a method for obtaining the flexibility

matrix from experimental mode data, The procedure orthogonaliHs the

experimental modes, using an analytical mass distribution, and then derives

the flexibility matrix of the structure, This method can be useful if complete

and accurate experimental data is obtained for a system difficult to model.

It can also be used to locate possible discrepancies between analytical and
experimental resultl.
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3.4 SOLIDBOOSTERS.The solid propellant grain behaves as a visco-elastic

solid. This visco-elastic mass must be represented in some manner when

the elastic properties of the booster are calculated. The simplest and most

straightforward method of accomplishing this is to consider the grain as

an inert mass, rigidly attached to the case. This method, while it has

several shortcomings, is in wide use and has been found to yield satisfactory
results.

The visco-elastic properties of the grain could be used to provide a more

comprehensive analysis of the elastic motion. There are several analytic
models which adequately describe the dynamic behavior of the visco-elastic

solid {Reference 15 or 16). However, it is generally felt that this area of

analysis does not need to be considered for study of lateral bending.

There are several reasons why the visco-elastic properties of the solid

propellant grain are not used in calculations of the booster elastic properties.

First, they are found to be relatively unimportant for booster vehicles having

a reasonable slenderness ratio. The grain structure, in response to stress,
exhibits a complicated behavior which can be represented as instantaneous

elasticity, delayed elasticity, and viscous flow. For small stresses occurring

for short times, the properties could be approximated by considering only
the range from 500 to 2000 psi at an ambient temperature of 70-80 ° F. Thus,

the contribution to the bending stiffness is quite small compared to that

of the vehicle shell, which is commonly referred to as the solid propellant
rocket motor case,

A second consideration is the variable nature of the grain properties them-
selves, The nature of the approximations which can be used for the model

to represent the grain would vary depending on the stress level within the

grain, frequency of the application of stress, and temperature, The modulus

of elasticity is quite temperature-dependent, exhibiting a change of roughly
a fsotor of 10 for every 40 degrees Y of change in i;rain temperatare. This

property alone makes it cumbersome to de|cribs adequately the solid propellant
grain motion. This difficulty in analysis, along with the relative unimportance
of the visco-elastio effects on the mode, has prompted most analysts to omit
these effeote from the model used to describe the lateral elastic motion of the

booster. Bending mode tests run by various airframe manufacturers have

indicated that these omissions do not affect the adequacy of the calculations. The

above should not be taken to imply that the visoo-elastio behavior of the solid

propellant grain is not important in all problems. It does become quite important

under certain conditions, particularly in the analysis of the longitudinal modes.

From this it follows that aspects important for the liquid cylindrical vehicle

lateral model are also to be considered for solid boosters. Propellant sloshing,
of course,does not exist. Because of the thicker tank walls of solid boosters, the

effects of adapter stL_fness and Joints are more predominant in the lower frequency
modes and should be carefully examined.
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3.5 CLUSTERED BOOSTERS. One method for obtaining the higher thrust required

for large payloads which minimizes some of the penalties in manufacturing costs and

fuel slosh forces involved in increasing booster diameter is the use of clustered

boosters. For liquid boosters a peripheral ring of propellant tanks is attached to a

center tank and the engines are supported on truss members connecting the tanks;

for solid boosters the motors are attached to a central solid or liquid booster. These

clustered tank designs destroy axial symmetry and also in some cases planes of

symmetry. This results in a more complicated lateral model where a number of

cylindrical tanks are coupled by their elastic connections and in the worst cases must
be allowed freedom in several directions for an adequate description of vehicle modes.

For preliminary design it is sufficient to choose approximate planes of symmetry

and analyze the vehicle for bending modes in pitch and yaw planes using branch beams

connected to the central core by translational and rotational springs. Simplified

torsional and longitudinal models will also suffice at this stage. These simple models

can be used to identify possible problem areas (such as relative modal frequencies)

and provide design criteria for the connections between tanks. In some cases the

vehicle characteristics are not, and sometimes even cannot_ be known with sufficient

accuracy to justify any consideration of the effects of non-symmetry.

A complete analysis (or test) should be undertaken to describe all the primary

modes of the clustered vehicle. This analysis would provide displacement and
rotation in two mutually perpendicular planes (preferably principal axis), torsion,

and longitudinal motion. The model of the tanks for displacement and rotation in

each of the two planes would be very similar to that discussed for the cylindrical
booster. Provision must be made to account for the motion of the outer tanks in

these two directions due to the torsional displacement of the center tank and the

elastic connections. Longitudinal motions of the outer tanks can couple with the

bending motion of the center tank; it is also possible that longitudinal motion will

couple with lateral and torsional displacement. As an example, consider a cluster

arrangement where the connection at the bottom transmits moment_ shear, and

axial restraints while the connection at the top provides only shear restraint. Then

it is possible to find a mode where the external tanks are bending, causing moments
and deflections at the connection to the center tank which will result in longitudinal

motion of the tank, as well as modes in which the longitudinal motion of the outer

tanks cause bending of the center tank. The significance of these types of modes can

only be ascertained from the analysis (or test) and can vary greatly from vehicle to
vehicle.

The torsional properties in the model can be represented by the torsional stiffness

and roll inertia of each tank. The tanks must then be connected by the elastic

properties of the truss. Formation of the torsional and longitudinal models are given

in the monographs on those subjects. The complete model for the clustered booster

then consists of the lateral model in two planes, the torsional model and the

longitudinal model. These models are then combined through the elasticity and

geometry of the connections to provide the stiffness and/or mass coupling.

Analysis (or test) will probably show some planes of symmetry and can also show

that some of the coupling mechanisms are unimportant for the particular problem to
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be solved. If this is the case, it is justified, and expedient, to devise a mathematical

model from the results of the complete anlysis (or test) which represents the modes
of interest.

The analytical representation of the clustered booster is more approximate than

that of the one-dimensional beam lateral model, especially for the condition of coupled

modes. The tri-axia! strain relationships are not completely satisfied, and the
inertia terms could be poorly represented in the combination lateral-axial motion.

These effects generally are of second order and as such should not alter the primary

modes. The elasticity of the connection points probably will require test data for

accurate values. The numerical techniques employed for the solution of the system
characteristics have been used for many years in the industry; however, some problems

in accuracy can be encountered when applied to the clustered booster, The number

of points describing the system may be compromised for efficient computer operation

and this vehicle may have modes of nearly equal frequency which will be difficult to
separate analytically (and experimentally).

The elasticity of the vehicle is most easily described by a coupled stiffness matrix,

but solving for the characteristics would then involve inversion of this matrix. This
inversion may lead to errors because of machine round-off errors. If the inversion

is successful, round-off errors could still be significant in the iterations for the

characteristic values, especially for modes with nearly equal eigenvalues. The

inversion problem can be circumvented by writing the coupled flexibility matrix
directly. The required transformations can be complicated and lead to errors, but

with special care this is not insurmountable. Another approach would develop an

uncoupled flexibility matrix and perform transformations of coordinates to provide

all necessary coupling in the mass terms. These last two approaches would still

have possible problems in the iterations on the systems characteristics.

An approach useful in calculating modes of complex systems is the component

mode synthesis method. Here the modes of the individual pieces are calculated and
then the combined modes are obtained from the modes of the component parts. This

is based on the assumption that significant motions of the individual tanks can be

described by a small number of modes. If this is true, then the solutions for the

combined system can be performed in terms of less coordinates.

Most of the clustered booster work to this date has involved two vehicles - - the

Titan IIIC and the Saturn I (and the second generation Saturn 1B). Titan IIIC is com-
prised of a center core liquid booster with two attached solid boosters (Figure 2);

the connections at the bottom transmit axial load, shear, moment, and torque.

The top connection transmits only shear. Because of the nature of the connections,

it can be seen that yaw bending and longitudinal coupling can occur and pitch bending

and torsion is another possible coupling mechanism. Storey in Reference 17,

develops the coupled flexibility matrices for these two conditions. This method

encountered difficulty in that the number of stations required for adequate repre-

sentation of the system with the required transformations exceeded computer capacity.
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The final Titan IIIC analysispresentedin Reference18utilizes the mode synthesis
approach. Thelongitudinal, torsional, andpitch andyawbendingmodesare
determinedfor eachtank andare thencoupledby the elasticity of the connecting
elements. The influencecoefficients for thesetrusses were obtainedexperimentally.
A report giving comparisonof analytical and 1/5 scale experimental results is to
be published.

The SaturnI vehicle consistsof a center LOX tank with eight peripheral tanks
for alternately LOX andRP-1. Thesetanks are connectedat top andbottomby
trusses (Figure 3) providing axial, shear, andtorsion restraint in bothplanesat
the bottom plus momentrestraint in the tangentialplanes. The top connection
provides similar restraint exceptfor the fuel tanks which donot transmit axial
load. The trusses are not symmetric with respect to planesof symmetry of
the tanks, but this effect is small suchthat planesof symmetry as definedby the
tanks donot introduce large errors.

Kiefling ( Reference6 ) uses a modesynthesisapproachfor calculation of
Saturn I modes. Pitch, yaw, andtorsion are considereduncoupledandthe effect
of longitudinal propellant vibrations in the outer tanks is coupledwith bending.
A comparisonwith test datashowsvery goodagreementin frequency, while
agreementof modeshapesis fairly good. The discrepancy, which is seenin the
seventhandsomehigher modes, is in the displacementsof the booster center
tank. Sinceno control sensors are locatedin this area, this discrepancyis of
limited importance for stability andcontrol studies. The modeshapedifferences
are dueto deflections of the spider beam, the structure connectingthe top of the
booster tanksandthe secondstage.

Two higher modesdeterminedanalytically were not foundduring the test.
Theoretical responsein thesemodeswasvery small; therefore, the modeswould
be difficult to excite.

Milner (Reference 19 ) establishes theoretically the uncoupling of pitch, yaw,

and torsion modes for a symmetrical clustered booster and investigates the effect

of minor asymmetry. Results of this study indicate that the effect of such coupling
on natural frequencies is minor; mode shapes are not presented.

O'Rourke (Reference 20 ) applies Kron's method to the analysis of an early
Saturn vehicle. Based on a total of 135 mass points, seven modes of the vehicle were

found in this analysis. Comparison of these results with dynamic test data is generally

as good as can be expected, since the analysis was based entirely upon theoretical

stiffness of the very complex structure. The dynamic data (modes) were obtained

by a frequency analysis of the vehicle response to a sinusoidal force. It was assumed

that the vehicle natural modes existed at points of maximum response.

Bost (Reference 21 ) analyzes the Saturn vehicle using a composite mode method.

Eight modes are found. Agreement with published test data is only fair. Again, the

difficulty was of obtaining a structural mathematical model which represents
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adequately the actual vehicle.

Republic Aviation currently is engaged in a Saturn I vibration study using Lanczos'

method of minimized iteration ( Reference 22 ) for solution of the eigenvalue problem.
The method used for calculating the matrix of influence coefficients is described

by Meissner (Reference 23 ), while the calculation of the dynamic matrix is shown by

Berman (Reference 24 ). The complete method is demonstrated on a simple cluster

beam configuration in Reference 25 , in which seven modes and frequencies of a

72 degree of freedom system are determined successfully. Preliminary, unpublished

results from the attempted application to a full scale Saturn including sloshing
and using 368 degrees of freedom indicate that problems with scaling, round-off

errors, and excessive machine time exist for the large number of modes desired.

Whetstone at Lockheed is currently working on an extension of the mode synthesis

approach to include the effects of spider beam flexibility, but no data has been
published at the present time.

Glaser, (Reference 26), constrains the center tank of Saturn I vehicle to oscillate

in a plane of symmetry; the outer tanks are restricted to motions symmetric to this

plane. The inner and outer tanks are coupled together through the use of equations of

compatibility at the connection points. The solution is carried out by a Myklestad - type

analysis. Lowey (Reference 27) also uses a Myklestad approach on a model whose
center tank is constrained to move in a single plane; axial motion of the outer tanks is

permitted. Results from both these analyses are not available at this time.

Lianis (Reference 28 ) develops a matrix solution of the dynamics problem of a

four tank booster without center core. The flexibility matrix of the whole unit, with

appropriate end fixity, is derived. This flexibility matrix together with suitable
mass matrix is used to derive equations of free vibration in matrix form. The tanks

are assumed to be similar, but the solution can be modified accordingly for the case

of non-similar tanks and for other tank configurations. The formulation is general so
as to furnish any complex mode of vibration. Simple modes, however, can be

obtained as particular cases of the general problem.
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4/METHODSFOR SOLUTION

4.1 FORMATION OF COUPLED EQUATIONS

The primary purpose of the lateral model is to obtain a representation of the real
system which can then be represented in mathematical terms. The general approach

to dynamic problems as given by Equations 1 to 8 requires the formation of the mass,

stiffness, and dynamic matrices.

4. 1.1 STIFFNESS MATRIX. Formation of Equation 8 requires the mass matrix and

the inverse of the stiffness matrix. Since the inverse of the stiffness matrix is the

flexibility matrix, one may question a method of analysis beginning with the stiffness

matrix when a flexibiLity matrix can be derived directly. The main advantage of the

stiffness approach is the straight forward manner of deriving a coupled matrix which

lends itself toward formulation of Computer logic capable of assembling a coupled

stiffness matrix for very complicated systems. Also, with high speed, accurate com-

puters available, the matrix inversion can usually be accomplished efficiently and

accurately. Therefore, it is of interest to derive one general computer program which

will develop the stiffness matrix of various complex systems from simple input format

and instructions. For certain specific problems it may be desirable to develop the

flexibility matrix. In this section the approach (as presented in Reference 29) for

developing the stiffness matrix for a lateral model will be given. The flexibility

approach is presented in Section 4.1.2 and a mass coupling technique is presented

in Section, 4.1.3.

Bending and shear stiffness are identified as points along the structure including
all mass stations. The nature of the stiffness distributions may Justify stiffness

definition at an intermediate point between mass concentrations. Thus the model is

formed from a series of connected massless beams, with mass and inertia concentrations

located at some or all of the Junctions of the beams. While the stiffness of the vehicle

may be distributed in a complex fashion, it may be represented with acceptable accuracy

by a series of straight line segments. This results in giving each beam segment a tra-

pizoidalstiffnessdistribution.

4.1.I.1 Free Element StiffnessMatrix. In the approach to be outlined,the 4 x 4

stiffnessmatrix of each element of the beam is firstobtained by invertingthe 4 x 4

flexibilitymatrix of thiselement, (The element stiffnessmatrices are developed by

thistechnique because itis easier mathematically and more accurate.) The matrix is

then coupled by constructinga matrix composed of the individual4 x 4 matrices. In this
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coupled matrix, the terms for common points of adjacent elements are the sum of the

terms for the individual matrices. With this matrix form, restraints or boundary

conditions are imposed which will represent the system to be analyzed. The derivation

of the stiffness matrix is now given.

X

-I

Q G

Y

Pl M1

Figure 4. Cantilever Beam in Bending

The bending stiffness for a value of x is

(E_)x = (ED1 I + "i- _
(10)

The general equation of the elastic curve of a deflected beam is

_= M = MI + PIX
• (II)

d x 2 E I (E i)x

Integrating (11) and substituting the boundary conditions _ = y = 0 at x = l, then Yl

and # 1 , the deflection and negative slope at x = 0 are:

M112 [In 1+ _,68 [_ _ -In (l+b)]

M11 P112

#1"_'_'-- In (l+b)+ 7__-""_ [b-In (l+r})]
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where a = (EI)I and b- (EI)2 - 1
(EI) 1

By a similar procedure, the deflection due to shear at x = 0 ls

P1 1
In (1+_)

Yl- --cd

01 =0

whe re
(KAG) 2

= (KAG)I and d- (KAG)I
•

Putting (12) and (13) into matrix form

(13)

where Cll,

lyll= cllc12
8 1 C21 C22

Pl

M1

C12, C22, are the coefficients of (12) and (13).

(l.I)

Then, by inversmn,

where

Pl 1 I C22

M1 = _ L-C21

Yl

2
N= Cll C22 - C12

(15)

The stiffness matrix is then

1 I C22

[K]=_ L_C21

-CI 2 ]

C11 J

(16)
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Considering a free element, with the same stiffness as the cantilever beam

(as shown in Figure 5), the equilibrium equations are.

P1 + P2 = 0

MI+ P1 I+M2 = 0 •

Also from Figure 5,

Y* = Yl - Y2

0* = 01 - 02

021

P
2 P1

X

Figure 5. Free Beam in Beading aad Shear
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Equation(15)nowbecomes:

.11ft.._c.._cl.1 Y2

M1 L-c12 C12 Cli (IC12" CII) Ol "

2

Expanding thisto includepoint 2 (by use of the equilibrium equations):

(17)

f
f

_P11 V C22 -C22 -C12 (C12 -1C22) 1 71

"221M1= N1/-C22],-C12 C22c19" cllC12 (IC12(1C22- C12>_ Cll)/1" 14'2 ' ''_'

_,2-lc22)(Ic22-c12)(Ic12-c,1)(c11-2lc12+12c22_Lk

The stiffness matrix for a free-free element has been obtained, The nature of the

expressions for Cll, C12, and C22 is such that as EI2 approaches EI1, the expressions
become indeterminate in form. Each has a limit which is the appropriate coefficient

for a beam of uniform cross section:

3
1 I

C11= "_ +

2
l

C12 = --=2a

1

C22

Ithas been found thatthe use of these values when [b, d [ < 0.01 produces

littleor no error, hence, withinthis range, itis recommended thatuniform beam

coefficientsbe substitutedfor the originalexpressions.
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4.1.1.2 Axial Load Effects. To determine the effect of axial load on the stiffness

matrix of a uniform beam element, consider the model in Figure 6. With an axial

compressive force, H, the moment and shear at any section, x, are given by:

I P2 'I Pl

/ : I I" ,

Figure 6. Beam Element with Axial Load

M=MI+PlX+H (Yl - Y)

V =Pl - H dYdx

(19)

 :dx
Utilizing the relationships 7 =

where 0 is the slope due to bending and _ is the slope due to shear.
d8 M

V/KAG and -- = - -- the following is obtained:
dx EI

d2y = d_O_#
dx 2 d x

or substituting from (19)

2 2
d2 2 M 1 u Pl u x 2

+ + u Yl+ u y- H H

(20)

(21)
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2 Itwhere u -
_K_H

Integrating (21) and applying the equilibrium equations gives the four deformations

Yl' Y2' 01 and 82 in terms of external forces Pl' P2' MI' and M2. Expressing

these relationships in matrix form and inverting gives the symmetric stiffness matrix

where

K21

K31

K41

K22

K32

K42

(sym)

K33

K43 K44

(22)

I sin u!

(1-cosuI) = _ =
= _ K41 K43 K32

and

r= 2,1_ooso,,_o,/1._)_osin ul .

31



The above matrix is good only for a positive (compressive} load. If the load

were negative, u would be the square root of a negative number. Therefore, another

derivation is needed to obtain a stiffness matrix for negative (tension) loads. The

derivation is the same except that the sign of H is changed and

v2= H

is used in place of u 2. As a result, the elements of the stiffness matrix become

kll = -F- :" H -Icosh vl = K33

H
k21= -_- (cosh vl-1 )= - K41 = -K43 = K32

k31 = --r- H

v +_-_

where

KAG "

4.1.1.3 Local Effects. Locally significant components can generally be included

in the model by attaching a mass and/or inertia at the appropriate location by means

of springs representing the elasticity of the mounting structure. The stiffness matrices

of elements representing translational and rotational springs of Figure 7 can be written

directly as:

32
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l x

e2 1
kT [ Xl

P #1

Figure 7. Translational and Rotational Springs

(23)

I M
(24)

4.1.1.4 Coupled Unrestrained Stiffness Matrix. The unrestrained stiffness matrix

is generated from each beam element, and a 2 x 2 stiffness matrix is generated from

each spring eicment,

Consider a beam element.

element must either be another beam or a spring, Figure 8.

© 0 ©
i 2 3 2

If an element is attached to a beam, this

(a) Cb)
Figure 8. Example of Attachments to a Beam Element

O
3
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When two beam elements are connected to the same node, coupling with respect to both

translation and rotation occurs.

The stiffness matrix layout corresponding to Figure 8 a[s given in Figure 9.

An element in the matrix of Figure 9 gives the magnitude of the force Pi or moment Mi

at node i due to a unit deflection yj or slope $j at node j. Notice that the two beam
stiffness matrices overlap at node 2, indicating node 2 feels the effect of both beams.

An element in this portion of the matrix is obtained by adding the corresponding element
of the two individual stiffness matrices.

P|

M
1

P2

M2

M3

h °i Y2 °2 e3

P = Force

M = Moment

Y = Deflection

# = Slope

Figure 9. StiffnessMatrix Layout for Attachment of Two Beams

The sitffnessmatrix layoutcorresponding to Figure 8 b isgiven In Figure I0.

The two stiffnessmatrices again overlap at node 2,but thistime at one element.

Coupling a beam with a spring only affectsone degree of freedom, for a spring can

have but one degree of freedom, (ifInsteadof a translationalspring connected at

node 2, a rotationalspring were connected, then coupling would be at element M2, #2")
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Pl

%

M
3

Y_ Y2 o_ Y3 o3

if i i

|

I
I
I

i
!
t.

/

Figure 10, Stiffness Matrix Layout for Attachment of Beam with a Spring

4.1.1.5 Reducing the Stiffness Matrix. The stiffness matrix, as developed in the

preceding may contain coordinates which can be eliminated by consideration of the

restraints put on a system and the application of boundary conditions to the system,

Together, the restraints and boundary conditions can be considered to be in two

classes, These are.

a,

b.

The equation {P }

Nodes that have zero generalized displacements but may have non-zero

generalized forces.

Nodes that have zero generalized forces (no mass or inertia) but may

have non-zero generalized displacements.

- [K] {y} may be rearranged as follows:

P q

LMo ._

a

b'

b

*8

_S

'O

(25)
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wherethe Ps and Ms are forces and moments, respectively, that have the non-zero

displacement and slopes Cs and a s. The Po and _ are forces and moments respec-

tively that have the zero displacements and slopes 0o and _o' If

and

t_l-I _s

then equation (25) becomes

-I'°t_o,°t01

Equation (26) Is equivalent to the following two matrix equations

(26)

and

matrix equation (27) is rearranged to become

If there are no boundary conditions associated with the generalized forces

, the matrix[a] is the final stiffness matrix [K'] and t_'st ls a mode shape
If there are also boundary conditions calling for zero generalized forces then

:]I::l (29)

36
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where the Ff are the non-zero generalized forces that have the generalized displace-
meats _f, and the Rf are the zero generalized forces that have the generalized dis-

placements Pf.

Equation (29) is equivalent to the following two matrix equations

and

[e'] {_} + [_] t',t " {_}" {0}
Therefore,

and

IFfl = lid]-. [e] [g]-i [_]] t_ft=[-K,_ t _,ft '

o+,e<t,+°+eo,.+,is the final stiffness matrix [K] and t_ft LS a mode shape

(31)

-1

[e] [g] [e'])

4.1.1.6 Elimination of Rigid Body Modes. The foregoing analysis was made for a

restrained system, one that is fixed at least in one place. For a structure that is

completely free (a free-free system), it can be shown that the eigenvalve problem
is one of the form:

In the analysis of a free-free system the structure must be fixed temporarily

at one point. If the structure were not fixed, an external force or moment applied to the

system would cause the whole system to move uniformly. The solution to the probtem

would then be impossible. Mathematically this is represented by a singular stiffness

matrix FK]. In Equation (32) the term - t_l Wo releases the fixed point with respect

to rranslation, while the term - ,_11'tvo relealel the fixed point with reapect to rotation.

87



The translation and rotation imparted to the fixed point when it is released are wo and
Vo . By applying the principles of linear and angular momentum to the system,

equation (32) can be expressed as a standard eigenvalue problem.

where, as explained In the foregoing

and

[ [c] [M]+ [tr]+ [tR] ]

is the final dynamic matrix. The derivation of [ TT] and [TR] is now given.

Referring to Equation (32):

= 1.0 if point i has a translation degree of freedom.

= 0 if point i has a pitching degree of freedom.

= the perpendicular distancc from the pitch axis through point zero

(origin) to point t If point l has a translational degree of freedom.

(Positive If measured forward of point zero. )

vI - 1.0 tf point 1 has a pitch degree of freedom.

38
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Applying the conservation of linear momentum

/

l=l E=3t,t .0m w +

o o
(34)

and the conservation of angular momentum

I

Multiplying equation (32)by t_ t' [M] yields

(35)

/ /

l" t [=] l*t - _o t" t [=3 t" l-'o t't' [_3t'

!

--"= I"I [_] [°] [=]I_I"

Defining

LAJ= l.( [M][C][_]

and substituting from equation (34)

l !

-mWo-W O t_,t [M] [.]-'o t_'t [M] tTt = 2

The total mass is

/

MT m o

- 39



and the static mass moment about a pitch axis through point zero is

!

s= t,f_l,l •

The refo re

M TWo + S Vo = -w [AJ ¢ • (36)

Multiplying Equation (32) by If'• [M] yields

/

Defining

/

LBJ --I'l[ M] [C] [M]

and substituting from Equation (35)

-I m t t I v , / ., -w , E_Jt,I- t t E_JI,t
0 0 0 0

2
: _ LBJt_f

The mass moment of inertia of total structure about a pitch axis through point zero Is

I = I
m T m o

40 ll
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Therefore

2

'mr "o+SWo" - _ L-_,-,/"'_,_. (37)

Solving Equation (37) for _ gives
O

O
swo÷ ,_2LBJI_t

I
m T

(38)

Substituting this In Equation (36) and defining
!

I 2
W = m T MT - S

gives

"vV
O

(39)

Substitutingthis inEquation (38)gives

_T L_J1 t_'t'W
(40)

By satisfying the identities

[TT] t_t - )_ {# t w0
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it is seen that the T and R matrices are

E im Ts [BJ -- LAJ: w

[[TR] : {'I _ LAJ - %-- L_I
(41)

4.1.2 FLEXIBILITY MATRIX. The Inverted stiffness matrix is in reality the
flexibility matrix of the system, i.e., it expresses displacements in terms of forces

° [c]{p}

If the model is statically determinate, the development of the flexibility matrix.directly

is much simpler than Inverting the stiffness matrix. However, if the structure is

indeterminate, the calculation of the elements of the flexibility matrix becomes more

complex, rapidly becoming Involved and tedious with Increasing numbers of redundancies.

The element, CLt of the flexibility matrix may be thought of as the deflection at point
I resulting from'a unit load at point J. The principle of reciprocal relations will force

symmetry of the matrix, reducing the quantity of coefficients to be evaluated.

The fLexibility matrix is formed by, first, developing LndLvLduaLflexLbility
matrices for each element in the system, consLdered as cantilevers.

01 OdiI (t (Ill M t

(42)

Note that a) YL and it are relative to the end considered fixed, and b) PL and ML are the

total loads applied to the end considered free. Consequently, the total deflection value

is found by transforming Y'l and 01 from relative coordinates to absolute coordinates.

42
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y't II= . (43)

The total applied loads, P.z and Ml, can be considered to be functions of the external
loads applied to each mass of the structure, expressed by the transformation

lpl IM,:[R] m I
(44)

Thus the relationship between total deflection ( Yi and Oi ) and the external loads applied

to each mass (Pi and mi) is developed by substituting the transformed values,

Yi

IT] [C] [R] = [C*] = coupled flexibility matrix . (45)

For a redundant structure, the influence coefficients are not so readily attained

and use must be made of an appropriate static analysis such as virtual work on

Castigliano's theorem (Reference 30).
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An example of flexibility matrix for a determinant structure is given below:

Consider the three-mass cantilevered structure shown [a Figure 11, The

quantities Pi and m i are the lateral force and moment applied to the structure at point i.

If each element is considered to be a cantilever, fixed at the base, the free end deflection

P3 P2 Pl

Figure 11. Three Mass Cantilevered Beam (Flexibility Matrix)

and rotation relative to the fixed base resultant from the total loads on the free end

(external loads plus loads transmitted by the preceding element, if any), Pi and Mi, are
found from the 2 x 2 flexibiliW matrix of the separated element:

P

M
l

These relationships are independent of the rest of the structure, so the response

for the entire system can be demonstrated by constructing a flexibility matrix composed

of the 2 x 2 matrices of the individual elements:

Y2

02 =

Ys

3

$$3 $03

053 O 03

P1

M]

(46).

The total deflections of the three nodes of the structure, Y[ and #l can be written

in terms of the re[at|ve displacements, _[ and T i :
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71--_i+_2+_÷ 11_÷ (11÷,_._,
/

Y2 = Y2 + Y3 + 12 03

#2 = 62+ sa

Y3 = Y'3

03= 03

In matrix form.

Yl

01

Y2

82

Y3

83

m

1

0

0

0

0

0

0 1 11 1

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

0 0 0 0

I

111+, )
I

12

1

0

1

m

81

e2

Y3

e3

(47)
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Combining Equation (46) and (47) yields,

P

Y

0

Y_

0

Y

0

1

0

0

0

0

0

0 1 11

1 0 1 0 1

0 1 0 1 12

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1

#81

P1

M 1

P2

4

M 2

e3i

M31
J

or

tl

Y21

>=

P21

Y31

P31

|_1

#61

0

0

0

0

001 Odl2 # ¢2 ! 63

0 ''2 '#2 ('|3+12"3)

o CO2 ##2 183

o o o |6 3

0 0 0 013

1613+ [11 + 12] e e3"_

#J3

(|$3+125#3)

#f3

]#3

#t 3

P1

M]

P2

,. (4s)
M_

P3'

Mfi

46
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The total load at any element and can be related to the applied loads at each point by

Pl = Pl '

MI= m I,

P2 = Pl + P2 '

M2= ml+ m2 + 12 Pl'

P3 = Pl + P2 + P3 '

M3=ml+m2+m3+ (11+12)Pl+12P2

or, in matrix form

P,I

MI I

P21

M21

P3 1

M3 J

m

i

1 0 0 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

11 1 0 1 0 0

1 0 1 0 1 0

+ 12) 1 12 1 0 1

m I

P2

<

m21

P3

m 3

(49)
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4.1.3 TRANSFORMED MASS MATRIX. Another alternatLve technique for forming the

dynamic matrLx is to transform the coordinate system from the absolute to the rehtlve

sense. The equations of motion formed previously consider the displ_cemems of the

respective coordinates to be referenced to a fixed point, or neutral position. The

displacements may also be expressed, relatLvely - referenced to an adjacent coordinate.

Furthermore, the Lnhereut reLationshLp between the dLsplacements La absolute terms,

y , and the displacements Ln relative terms, y" , is readLly expressed by a

s Lmple transformat Lon matrLx:

lyf = iT] t_'t.

For example, the simple cantilevered beam In Figure 12 has six coordinates. The

relative-absolute relationship is given by:

Y2 = Y2 + Y3 + L2 03 '

"Y3 = _'3 '

81= _'1 + 8"2 + 03 ,

82= 8"2+ 03 ,

u

O =# •
3 3 "

5O

il



FLgure 12.

/----.,% 91

O
f

I
1

Three Mass CantLlevered Beam

Thus,

or

Y2

Y3

I

#1

t

1 1

1 1

0 1

0 0

0 0

0 0

1

0

0

0

0

0

0 0 13

0 0 0

1 1 1

0 1 1

0 0 1

Y2

Ys

w

81
i

i

u

e21

(51)

The kLnetic and potentLal energies of the system can then be written (in matrix notation)

in terms of relatEve coordinates as.

/ /

_. " t_l' [c-_] t_t.
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where C is the uncoupled flexibility matrix consisting of 2 x 2 matrices for cantilevered

elements. Using La Grange's equation

d'-_" 8# i + + _ =OY l OY l
o (52)

the equations of motion become

and the dynamic matrix is

/

[[C][T] [M] IT] ] {_b} = _, I_l . ,
(54)

This approach ls very similar to the method In the previous section with the

transformation of coordinates coupling the mass matrix instead of the flexibility

matrix. Note that the modes, t4} , are In terms of relative coordinates and

must be premultiplied by the tr_m_form matrix, iT], to obtain absolute vectors.

4.2 SOLUTIONS FOR CHARACTERISTICS

Formulation of the equations of motion of dynamic systems results In a linear

differential equation for the continuous exact solution or a series of differential

equations for the approximate solutions. For lateral vibration usually only the lower

modes are of any significance and therefore the approximate solutions are of practical

importance. Two methods are used to describe the system In these approximate

solutions: (1) the system ls divided into a finite number of segments connected by

massless stiffness and (2) the system is described in terms of assumed functions,

Solving for the characteristics of the resulting equations can be categorized into

three groups. These are: (1) energy methods, (2) solving the differential equation,

and (3) solving the integral equation. The equations are in the general matrix form:

or

}..

(differential equation) (55)

(integralequation) (56)
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The most general solution of Equation(55) involves expansion of the determinant and

solving the polynomial equation. This procedure is adequate for simple systems and

up to four degrees of freedom can be solved easily. Methods for higher order systems

have been developed In References 31 and 32. However, since only the lower modes

are important some approximate methods have been developed which obtain these modes

and frequencies with sufficient accuracy.

4.2.1 MATRIX ITERATION (STODOLA AND VIANELLO METHOD). The matrix

iteration technique is essentially the Stodola and Vinanello method in matrix form.

The integral equation is

Izl= ]I'.l (57)

It can be seen that 2 [ M ] {Zn_ 1 } , is the load associated with a assumed mode

shape, t Zn-lt , vibrating at a frequency _. The deflection resulting from this

load or the next approximation of the mode shape ls obtained by premultiplication by

the influence coefficients,or the inverse of the stiffness matrix. Since @ 2 is a constant

it can be assumed to be unity and the equation becomes

where {Z*} is a vector normalized on its largest element. Successive iterations of

Equation (58)continue until tZn*t has converged, i.e., every element in IZn*l
satisfies

Z* - *

The frequency of the mode is then

1
z (59)

nl
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where Znl is the largest element of the unnormaiized vector ,1Zn t • Proof of convergence
is given in Reference 33.

For most practical problems it is necessary to obtain more than the first normal

mode. This is accomplished by applying the condition of orthogoaality as a means of

purifying the assumed higher modes of lower mode components. The orthogonality

condition requires that

t

Therefore, modification of the dynamic matrix to satisfy this condition will allow

extraction of the next mode. This is expressed in matrix form as:

where [I] is a unity matrix and ["A ] is a matrix of zero's except for the row (or

rows) imposing the orthogonallty. This row is composed of the elements Z i m i
normalized on its largest element. This element locates the characteristic row and

Lhe row matrix is a good approximation of the characteristic row. As an example,

[ Z. / mJ = [Zll m 1 m 2 m 3 m4J .j Z21 Z31 Z41

If Z31 m 3 is the largest element, then

[^] °

m

0 0 0 0

0 0 0 0

gll m 1 Z21 m 2 Z41 m 4
1

Z31 m 3 Z31 m 3 Z31 m 3

0 0 0 0
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Once [ A ] is obtained then D 2 can be formed and iterations proceed to determine the

next mode and frequency.

For improved accuracy and subsequent deflation of the D matrix it is recommended
/

that iterations be performed on the row matrix, L xj M J , by post multiplication by the
dynamic matrix. This removes errors in rouadoff in the preceeding fundamental mode

and provides a more accurate characteristic, Thus,

[z_ MJ [D] -- MJ

./

where [ J indicates normalization on its largest element. [ Zj M J is then normalized
on its largest element and placed in the [ h ] matrix. If the characteristic row is found

by this method, the deflated dynamic matrix for successive modes can then be obtained

by

If the deflated matrix is obtained only from the conditions of orthogonality, then

['o2"['12 [ci] - [^2].

where[ h n ] satisfies orthogoaallty between first and n, second and n, ---, and n-1
and n modes.

An alternate method for deflating the matrix is given In Reference 34 and is

particularly useful in applicatiori with automatic computers. This deflation method

gives

IZltLzljEM] (63)

55



where (Z1) is the column of elements of the first mode normalized so that

[ZlJ EM] _z1} = 1. For each succeeding mode the matrix is modlfled by subtracting
the triple matrix product for the proceeding mode from the proceeding modified dynamic

matrix

n-1

(64)

4.2.2 HOLZER-MYKLESTAD METHOD. Tne Holzer-Myklestad mechod is extremely

suitable for obtaining solution oz the differential equations of beams represented as con-

cencrated masses connected Dy massless stiffness elements. A principle acWantage of this

method is that each mode [s o_tained independently and therefore all modes are as accurate

as represented by the system anaJ.yzed.

The technique proposed by Holzer was orig[mully developed for torsional systems.

It is equally applicable to any close-coupled system, |. e. represented as a spring

mass system. A frequency is assumed and one element of the mode shape vector is

taken as unity. Through equilibrium equations, the other elements of the vector are

calculated. There will be one additional equilibrium equation left after the last element

of the mode shape vector ls evaluated, which will be satisfied only [f the assumed

frequency is correct. Successive frequency trials are made until the proper value

is obtained. The process is facilitated by plotting net unbalanced force on the final

mass against frequency. At the natural frequencies of the system, the curve of net

force passes through zero.

As an example, consider the simple system of two masses and two springs shown

in Figure 13. The governing equations are

mlXl + K1 Xl " K1 X2 = 0

m2X2 " K1 X + (K I+K2) X 2 = 0 .

(65)
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ml t_

X

Figure 13. Two Degree of Freedom Spring-Mass System

The assumption of harmonic motion reduces these equations to

. )-@ m I + K 1 X 1 - Klx 2 • 0

(' )-K 1 X I + - _ m 2 + K1 + K 2 X 2

2 2

Let _I = _ andX 1

K1

X2=

-- 1. From the first equation:

2
-_m I

K1

= 0

(_;6)

and from the second equation,

/t /K1 m 1-K1 + K1 " 2m2 + K2 k; . 0 .
((_7)

The magnitude of the left hand side of this equation can be plotted agal_tst frequency.

It may be facilitated by calculations made in tabular form:

2
oJ

K1

K
1

2
- ¢0 m 1

2

m 2

0

2

K1 - _ ml= X

K1 ."

-2
K 1 - ¢_ m 2 + g 2

K 1 + K2

IIts idual

K 2
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When the residual is zero, the correct frequency has been obtained.

Branched systems will necessitate temporarily expressing some elements of the

mode shape vector in terms of others, but in all systems, numerical values for the

entire mode shape will be determined upon solution of the next to last equilibrium

equation, leaving the last equation for frequency evaluation.

As an example consider the simple three mass system shown in Figure 14.

ml_I ÷ (KI÷ Z3)Xl-ElX2-K3X3= 0

m 2X 2 - K 1 X 1 + (K 1 + K2 + K4)X 2-K 4x 3= 0

m3 X3 - K3 Xl

Figure 14.

- K4x2 ÷ (Ki ÷ z4)xa= o

K

X

Im1 Tx2

Three Degree of Freedom Spring-mass System

Introducing harmonic motion results in

2
(K I + K s- _m 1)x I'K Ix 2-K 3x 8

2

-K Ix I + (K 1 + K 2 + K 4 - _ m 2) X 2 - K 4x 3- 0

-Z 3X 1 - K4x 2 + (K 1 + K 4- _m3)X 3= 0
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Let X 1 = 1, and from the first equation

2

K1 + K 3- e._ml-KlX 2

X3= -- .... K3

From the third equation

- K3 - K4 X 2 + _ 2 ml - KIX21(K1 + K4_ 2m3) K1 + K3 K3 =0

or

Hence

-K 3 +

X 2 =

(Z1 + K3-J ml)(K1 + K4- 2m3) K3

- 4+_3 K1 + - m

2
K 1 + K S- t_ m 1-K 1 A

X 3 = K3 = B.

(68)

(69)

And finally, from the second equation

-K 1+ K1 + K 2 + K 4- _ m 2 A-K 3 B = 0 . (70)

The three frequencies which satisfy this eq_tion are the natural frequencies a.d _r_

determined by tabular msthods as in the previous example,
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In reality, the Myklestad method is the HoLzer method extended to include far-

coupled systems, I.e. beam systems. The slope and deflection at one end of a beam

segment are expressible In terms of the slope and deflection at the other end, the

loads at the other end and the flexibility of the beam segment. The boundary conditions

at one end of the beam give an initial set of values. Two of the four conditions will

be unknown. One is set to unity and the interior values are determined in terms of

the remaining unknown.

V
n+l

n

2

mn+l Yn+l

__n+ I Vn
lYn

J+
n

Figure 15. Free-Body Diagram of Vibrating Beam Segment

As an illustration, consider the beam segment in Figure 15. The deflections

and forces at the left end can be expressed as:

2
Vn+ 1 V - m _o= n n+ 1 Yn+ 1

M M +V l
n+l '= n n

Yn+l Yn-V (51)-M ($O)-lO nm n n

On+l On-V (O$)- M (00)n rl

(71)

The quantittcs ( 6 $ ), ( 6 0 ), ( 0 $ ), ( e0 ) are the flexibility influencecoefficients

of the beam. If the right end of the beam segment is the end of the total beam {let n = 1),
two of the four vaiables at that end can be determined from the end conditions: for a free

end. M1 is zero and V1 is equal to the inertia force ml _ 2 Yl' Of the two remaining
conditions, one is assigned a value of unity and analysLs is carried out in terms of the

other. For the free end, X 1 is assigned a unity value (makLng V1 = ml _ 2). The four

variables at point two may be evaluated as:
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Y2 =i-m1 _(a5)-11# 1 ,

2

s2=s i-m i (06)

M2 = ml 2 l ,

V 2= m 1 _0 -m 2 _0 1-m 1 2(66)_1101 "

If an arbitrary value force 2 is assigned, each of the four variables at point two

reduces to an expression involving a constant and a coefficient times 01.

The variables at the next point on the beam may be expressed in terms of those

just obtained by using Equation (71) and will also be in linear terms of 81. The

evaluations may thus be propagated across the beam, with the ultimate result that

the four variables at the far end of the beam are expressed as linear functions of 81.

From the end conditions at this point, the values of two of these variables will

be known. One of these known quantities is used to evaluate 81, which is then

substituted into the expression for the second known variable. For the correct value

ofo 2, the expression will produce the known value; otherwise, art error term or

residual will be obtained. Several trial values ofo 2 are made, repeating the pro-

pagation process each time. If the resultant residuals are plotted against_ 2, the

extraction of the proper values ofo 2 is facilitated by extrapolation of the curve. The

natural frequencies occur where the curve crosses the axis. Higher frequencies

are obtained independently, thus are independent of any inaccuracies which may
exist in calculated lower modes.

4. 2.3 ENERGY METHODS, Lord Rayleigh's method of evaluating the fundamental

frequency of a system is based on the principle of conservation of energy. At the

maximum deformation of the system vibration in its fundamental frequency, all the

energy of the system is in a potential energy from E dx

But at the instant the system passed through the equilibrium position, its energy is

entirely in kinetic form (KE = _._,1 my 2 dx) . If energy Is conserved, the maximums
of those two values may be equated. A deflection shape is assumed and for harmonic

motion, y = U sin wt., and hence,

= _ U cos w_c

2 E1( d2U 2d--_/ dx -½ m U 2 2 dx, (72)

and thus

fE ( d2U _2_#2 = I d-_] dx (73)
I

m U 2 dx
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It canbeshownthat close approximations to the fundamental frequency are

obtained even if the assumed deflection shape is not very close to the true shape.

The Rayleigh method was generalized by Ritz to give more'accurate

values for the frequencies as well as to give estimates for several mode

frequencies at one time. Basically, Ritz suggested that the assumed deflection
curve be expressed as the sum of several functions in the form

Y = _ fn (x) qn ' (74)

The more functions and constants introduced the more accurate will be the value of the

fundamental frequency. Also if n functions are introduced estimates on the first n mode

frequencies will be obtained. Having expressed the assumed deflection curve in terms

of n functions f (x), the kinetic and potential energies (omitting shear & rotary inertias)

are expressed as

2KE =fm (x) :_ (x, t) dx (75)

2PE =fEI (x) _'dx2/ dx . (76)

Substituting Equation (74) into Equations (75) and (75),

n n

2KE = _ Z mij qiqj
i=: j=:

whe re

and

n n

2PE = Z :_ KtJ qi qj
1=1 ]=1

d2 (x)J d2Kij =f EI _ [ fi "_xx2 fj (x) J dx

d 2

(77)

(78)
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Substituting Equation (77) and (78) into La Grange's Equation gives the differential

equations

n n

Z mlj ÷ Z; Kijq =0. (79)
i=1 i-1 J

Puttingas a solution_ = ZIsin _t

It
2

(Kij - e mij ) _ = 0 (80)
j=l

or a set of algebraic equations equal in number to the number of unknown coefficients.

The determinantal equation for the set will yield frequencies for the first n modes of

vibration and eigenvectors which when multiplied by the assumed functions give

approximate mode shapes.

The result gives good accuracy in frequency but poor agreement with

mode shape. Using the mode shape obtained as a second approximation

improves frequency accuracy and greatly improves mode shape.

Also, expressing the strain energy in terms of inertial loading rather

than the ass'umed deflections increases the flexibility of this method in that

shear deformation and rotary inertias are then easily included.

4.2.4 MODAL QUANTITIES. Solutions to the characteristic equations give

the reciprocals of the squares of the circular frequencies and also the mode

shapes of the restrained system. The linear frequencies of vibration are
obtained from the circular frequencies. If each mode shape, {¢} a is considered

/ Mto be the nth column of a matrix [@] of all the mode shapes then, [@1 [ ] [¢]

is an orthogonality check of the mode shapes. The diagonal element( [¢]/ [M] _¢]/

is called the generalized mass of the system for the mode n. (The generalized

mass of the system may be considered to be a measure of thekinetlc energy of

the system). In this discussion the vector t_bt was stated to be mode shape of

the structural system. For a restrained system, t_bf is the complete mode

shape. For a free-free system the displacements clue to w o and v o must be

added to obtain the complete mode shape. Also, for a free-free system, the

generalized mass must be modified to Include the contribution of the temporarily

fixed point.
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The slope of a node of a beam as computed by the foregoing Ls not the total sLope

of the beam at the node. The slope computed Ls the slope due to beam bending. To

obtain the total slope, the shearing slope of the beam must be added to the slope due to

beam bending. This is done by

{,}- ,} +{,}

and,

{ B } = total slopes of a beam element,

{ 0 } = bending slopes of a beam element,

{ "v } =shearing slopes of a beam element,

{FB} = internal forces on a beam element, and

{SS } = shear - slope matrix .

The matrix [ SS 1 is a diagonal matrix whose elements are 1/KAG at the nodes of
a beam element.

The generalized forces of the restrained system may be obtained from eLther

Equation (31) or Equation (27) depending upon whether or not there are any zero

generaLized force boundary conditions. Rather than use Equation (31), another

equivalent relationship Ls used. Extending Equation (31)

Equation (82) is used instead of Equation (31) when calculating the generalized forces

of the restrained system. Using Equation (30) the generalized displacements that have

zero generalized forces are calculated. For a free-free system Equation (30) is modified

slightly. In its stated form Equation (30) would compute generalized displacements with

respect to the temporarily fixed point. For a free-free system the analogy to Equation

(30) is :
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/ !

where,, _, Wo and v o have previously been defined, and 9 and • have the same meaning
/

as _ and _. However, _ and r refer to the mode shape, t_ , and _ _and • refer

to the generalized displacements that have zero generalized forces, t Pf} ' The
generalized forces that have zero generalized displacements are obtained from Equation

(28). The internal forces and/or moments (shears and/or bending moments) of each
element are obtained from:

IP}:

4.3 MODE SYNTHESIS ANALYSIS

The complicating aspects of the clustered booster vehicle have. as a net effect,

the requirement of large numbers of coordinates in the model. The resultant size

of the governing equations may well be so large as to overwhelm the best of analysts

or computers. The technique of modal synthesis is a process whereby the dynamic

characteristics of the several components of the system are calculated separately,

and then brought together to evaluate the dynamic characteristics of the entire

system. This technique is also applicable to the analysis of staged vehicles in that

the natural vibration characteristics of the individual stages can be computed sepa-

rately and combined via modal synthesis to determine the characteristics of the entire
vehicle.

The entire concept of modal synthesis is founded on the principal that a component

is completely (or adequately} represented by its primary modes and if this is true, then

the connections of these components at their interfaces can be described in terms of the

component modal quantities. A set of equations can be written wlth coordinates in terms

of component mode shapes and amplitude factors. Solving these equations for the amplitude

factors and multiplying by the component modes wilI give system modes.

The division of the system into components can be done by removal of connecting

[lexibility elements. The parts thus formed wlll constitute free system l. e., not attached

to a fixed point. It is assumed that the components wlll be deflned in such a way that

determination of their individual dynamic characteristics does not become a complicated

task and consequently, the techniques previously discussed regarding the analysis of

simple systems may be utilized to provide these dynamic characteristics.
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For the free components,completedescrLptIonof motion requires the rigid body
translation androtation modesandtheelastic modes. Thus,if the componentis In beam

form, the lateral deflection of point is given by:

YL = Y + L I 8 + Z n @Ln _;n

where

YL

Y

L L

8

@n

@in

Ls the lateral displacement of point L,

Ls the rigid body lateral translation of the component c. g.,

Ls the distance between the component c.g. and point L,

Ls the rigid body rotation of the component c.g.,

Ls the appropriate weLghtLug factor applied to mode n, and

Ls the Lateral dLsplacement of point l Ln mode n .

The rotation of point L Ls given by

O =O+Z a
l n In

I?
n

whe re

0 L Ls the angular displacement of point L, and

ai n Ls the slope at point L Ln node n.

A simple component beam will have its coordinate motions expressed tn matrix

form as:

A

Yl

Yk

.01

e k

m

1
i

i
_m

0

0

m

Li . it..... . im

T"k _kl ..... _km

I a!l ..... ai m
+

1 akl ..... ak" m
+

(84)
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More generally

tY}
I _ Y

For a system composed of several component beams

y(1)

y(2)

y(s)

u

TS (1)

TS(2)

• , TS(S)

(i;
(2)

P(Si

(85)

The kinetic energy of the system is then

• I /

2KE = W (TS) M(TS) _ •

and

dt $_1 ] = (TS) M (TS) '_

where M is a diagonal of system masses.

/
Note that (TS)

represe ntation
M (TS) is a diagonal of the generalized masses of modes used in the

/
(TS) M (TS) _ = ii+<1 m (2) ;..'(2)

"'"".... re(S) i'(S)

(86)
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Similarly, the potential energy in the component modes can be expressed as

2PE = . '(TS)'K (TS).

and the energy tn the connectLng elements can be expressed as_ k K . A where K ,
[s the stiffness of the connecting element and,£ k te the deformatLon o_]m_ element cK

If Yr and er describe the ooordLnate dLsplaoemertts of the oompoaentl, then

/"}{a) = [RC] er = (RC) (rS).
(87)

where (RC) ts a transformation matrix expressing the relation between £k and the

component displacements. The potential enerly is gLven by

2_ -._ (TS)' (RC)' K (RC) (TS) ,
c

and the total potential ensrgy of the system

2PE = _' (TS)_ (RC)] Kc (RC)' (TS) . + _ (TS)_K (TS)

= r(TS)' (RC)' K (RC) (TS) + (TS)'K (TS)_]
_. L c

Itis shown tn Reference 35 that

(TS)/K (TS) =["_2m,,] .

Therefore, the complete set of equations ts
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There are other ways to deveLop a modal synthesis technique for complex systems

which are quite valid. But the approach presented above enables the ar_lyst to evaluate

a minimum of physical parameters, then manipulate them with matrix techniques, which

are readily adaptable to computer programming, into the final form of the governing

equation: the parameters to be obtained are Just the component modal propertLes (mode

shapes, generalized masses, frequencies), the coordinate displacements in terms of the

rigid body displacements and modal weighting factors (the _TSJ transformatLon matrix),

and the deformations of the connecting elements in terms of the coordinate displacements

(the [RCJ transformatLon matrix). The final governing equatLon may be formed Immediately

from these data. Solutions for these equations can be obtaLned by the methods given In

Section 4. 2.

These roots wLll be the frequencLes of the coupled system, and the vectors { _ } ,

when premultLplted by ETSJ wLU gLue the system modes.

To demonstrate the modaL synthesLs technique, consider the sprLng-mass system

of Figure 16.

 _jx2

__jx 

Figure 16. Three Degree of Freedom Spring Mass System

The close coupled system Is used for simplicity. By removing spring element K 2,
the system isdivided intotwo smaller components. Itcan be shown by elementary

dynamic analysis thatthe dynamic characteristicsof the two component parts are:
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Component 1

2 Kl[ml+ m2]
0 , '

m I m 2

m

m 1

m1+m 2 ,--m2Eml+ m2]

Component 2

K3

m 3

m 3

2
m

m +m

' i L m2 J
K3

1 1

1
m1
m

m 2

The displacements are expressed [n terms of the component modes as:

Xl =Xl + _'II _I

X 2 = X 1 + _'21 "1

X3 = _b12 "2

or

x, x:
" _21 ' "I > "

o + "2

p

1 1 0

I -ml 0

m 2

0

m

1

X 1

"1
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The deformation of the oommct[_ element is given by

= X2 - X3 " X1 + ¢21 _1 "

or

1 -1]

which can he simplified to

m

1

0

1

1

m 1
m

m 2

0

°Ix
0

P

1
#2

_ m-J_1 .

= [1 m2 1]

The contrLbutton of the connecting element to the etiffness matrix is
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or

i

m 1

K2 -'_22 K2 -K2

2

K 2 -- K 2
m 2 K2 m 2 m 2

m 1

-K 2 m 2 K2 K2

Thecontribi 0nK1thic°mP°ne1" m21Ls2d  g°ialK3, trLx
These two are added to form the final stiffness matrix.

The mass matrix Ls formed dLrectLy from the component mode generalLzed

masses,

"ml + m2

m I

m 3

The governing equation is thus:
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mI + roll

m _ m_

ma W|I
mmm w

rail maR

K3 " _ Ka
ms "KS

"s _ ..'s _l +a \ ", / ", %

-x, _ % %+%
i mfl

pat it

x

#1 "0

11|

To examine the accuracy of this technique applied to thls particular model,

numer[cal values may be applied to the system parameters and solutions obtained from

the above equations and also from equations derived In the classical manner.

Let M1 = 10 slugs (143 x 106 dynes), M2 ,, 20 slugs (286 x 106 dynes) M3 - 30 slugs

(429 x 106 dynes), K 1 - 15000 lb/ft (224.8 kg/cm), K2 = 12000 lb/ft (179 kg/cm), K3 =
10000 lb/ft (149 kg/cm). The eLgenvalues and eigenvectors resultant from the two sets

of equations are as follows:

E lgenvalue 1

Class Ical Equation Mode Synthesis Equa.

7. 6651127 x 10 -3 7. 6651123 x 10 -3

E lgenvectorI {,DO°DO10.91303 0.91303
0.60578 0.60578 t

E tgenvalue 2 1.1096561 x 10 -3 1.1096888 x 10 -3

E tgenvector 1 t,°°°°°I Iii°°°°°t0. 39921 39921

-0. 95138 - 95138

E Lgenvahm 3 3,9189681 x 10 -4 3,9189677 x 10 "4

E tgenvector 3 I,ooooof  ,ooooot,o11315423 _ O. 15423
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